Publications

(Also see recent preprints in ArXiv1, Arxiv2)

Books and dissertstions:

  • V. Iusa, Dickson near-fields, Master’s Thesis, Univ. of Trento, 2015, 83 pp.
  • E. I. Khukhro, p-Automorphisms of finite p-groups (London Math. Soc. Lecture Note Ser. 246), Cambridge Univ. Press, 1998.
  • E. I. Khukhro, Nilpotent Groups and their Automorphisms, de Gruyter Verlag, Berlin, 1993.

Journal papers:

  • E. I. Khukhro and  P. Shumyatsky, Engel-type subgroups and length parameters of finite groups, submitted, 2015; http://arxiv.org/abs/1506.00233.
  • S. Mattarei, Inversion and subspaces of a finite field, Israel J. Math. 206, no. 1 (2015), 327–351.
  • E. I. Khukhro, On finite soluble groups with almost fixed-point-free automorphisms of non-coprime order, Siberian Math. J. 56, no. 3 (2015), 541–548; http://arxiv.org/abs/1501.02071
  • M. Avitabile and S. Mattarei, Laguerre polynomials of derivations, Israel J. Math. 205 (2015), 109–126.
  • E. I. Khukhro, N. Yu. Makarenko, and P. Shumyatsky, Locally finite groups containing a $2$-element with Chernikov centralizer, to appear in Monatsh. Math,  http://arxiv.org/abs/1410.1521
  • E. I. Khukhro, N. Yu. Makarenko, and P. Shumyatsky, Finite groups and Lie rings with an automorphism of order $2^n$, to appear in Proc. Edinburgh Math. Soc.;  http://arxiv.org/abs/1409.7807
  • E. I. Khukhro and P. Shumyatsky, On the length of finite groups and of fixed points, Proc. Amer. Math. Soc. 143, no. 9 (2015), 3781–3790;  http://arxiv.org/abs/1405.1946
  • E. I. Khukhro and P. Shumyatsky, On the length of finite factorized groups, Annali Mat. Pura Appl. 194, no. 6 (2015), 1775–1780; http://arxiv.org/abs/1405.1899
  • E. I. Khukhro and N. Yu. Makarenko, Finite p-groups with a Frobenius group of automorphisms whose kernel is a cyclic p-group, Proc. Amer. Math. Soc,  143, no. 5 (2015), 1837–1848; http://arxiv.org/abs/1302.3499
  • M. Avitabile, S. Mattarei, Nottingham Lie algebras with diamonds of finite and infinite type, J. Lie Theory 24, no. 2 (2014), 457–473.
  • S. Mattarei, A property of the inverse of a subspace of a finite field, Finite Fields Appl. 29 (2014), 268–274.
  • E. I. Khukhro and P. Shumyatsky, Words and pronilpotent subgroups in profinite groups, J. Austral. Math. Soc97, no. 3 (2014), 343–364;  arXiv:1312.2152
  • E. I. Khukhro and P. Shumyatsky, Nonsoluble and non-p-soluble length of finite groups, Israel J.  Math. 207 (2015), 507–525; http://arxiv.org/abs/1310.2434
  • G. Ercan, I. Guloglu, and E. I. Khukhro, Frobenius-like groups as groups of automorphisms, Turkish J. Math., 38  (2014), 965–976 DOI: 10.3906/mat-1403-62.
  • E. I. Khukhro, Nonsoluble length of finite groups, Algebra Logic 53, no. 5 (2014), 425–428.
  • E. I. Khukhro, N.Yu. Makarenko, and P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, Forum Math. 26 (2014), 73–112.
  • G. Ercan, I. Guloglu, and E. I. Khukhro, Rank and order of a finite group admitting a Frobenius-like group of automorphisms, Algebra and Logic 53, no. 3 (2014), 258–265.
  • G. Ercan, I. Guloglu, and E. I. Khukhro, Derived length of Frobenius-like kernels, J. Algebra 412 (2014), 179–188.
  • E. I. Khukhro and N. Yu. Makarenko, Lie algebras admitting a metacyclic Frobenius group of automorphisms, Siberian Math. J. 54, no. 1 (2013), 100–114.
  • E. I. Khukhro, Counterexamples to a rank analogue of the Shepherd–Leedham-Green–McKay theorem on finite p-groups of maximal class, Siberian Math. J. 54, no. 1 (2013), 174–184.
  • E. I. Khukhro, Rank and order of a finite group admitting a Frobenius group of automorphisms, Algebra and Logic 52, no. 1 (2013), 72–78.
  • E. I. Khukhro and N. Yu. Makarenko, Finite groups admitting metacyclic Frobenius groups of automorphisms, J. Algebra 386 (2013), 77–104.
  • E. I. Khukhro, Problems of bounding the p-length and Fitting height of finite soluble groups, J. Siberian Fed. Univ. Math. Phys. 6, no. 4 (2013), 462–478.
  • E. I. Khukhro, Automorphisms of finite p-groups admitting a partition, Algebra and Logic 51 (2012), 264–277.
  • E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012), 1–11.
  • E. I. Khukhro, On p-soluble groups with a generalized p-central or powerful Sylow p-subgroup, Int. J. Group Theory 1 (2012), 51–57.
  • E. I. Khukhro, N.Yu. Makarenko, and P. Shumyatsky, Fixed points of Frobenius groups of automorphisms, Dokl. Math. 83, no. 2 (2011), 152–154.
  • E. I. Khukhro and P. Shumyatsky, Nilpotency of finite groups with Frobenius groups of automorphisms, Monatsh. Math. 163 (2011), 461–470.
  • E. I. Khukhro, Nilpotent length of a finite group admitting a Frobenius group of automorphisms with fixed-point-free kernel, Algebra Logic 49, no. 6 (2011), 551–560.
  • E. I. Khukhro, Fixed points of the complements of Frobenius groups of automorphisms, Siberian Math. J. 51 (2010), 552–556.
  • E. I. Khukhro, On solubility of groups with bounded centralizer chains, Glasgow Math, J51 (2009), 49–54.
  • E. I. Khukhro, Lie rings with finite cyclic grading that have many commuting components, Siberian Electron. Math. Rep. 6 (2009), 243–250. (Russian, electronic).
  • E. I. Khukhro, A. A. Klyachko, N. Yu. Makarenko, and Yu. B. Mel’nikova, Invariance under automorphisms and laws, Bull. London Math. Soc. 41 (2009), 804–816.
  • S. Mattarei, Artin–Hasse  exponentials of derivations, J. Algebra  294 (2005), 1–18.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: